

	Home	About Thomson Reuters	Press Room	Contact Us			
ScienceWatch Home	•		\frown				
Inside This Month	SCIP		СН 🖾))			
Interviews			.com				
Featured Interviewa	TRACKING TRENDS & P	ERFORMANCE IN BASIC RESEARCH					
Author Commentaries		Inte	Analyses	Data & Rankings			
Institutional Interviews	What's Hot In : What's Hot In Chemistry Menu : Sustainable Electrodes for Solar Cells - Jan/Feb 2010 WHAT'S HOT IN CHEMISTRY, January/February 2010						
Journal Interviews							
Podcasts							
	Sustainable Elec	trodes for Solar Cells					
Analyses	by John Emsley						
Featured Analyses	To generate solar en	erav, a solar cell must have an elec	trode that is transparen	t Currently there are two ma	erials which meet		
What's Hot In	this requirement: indium tin oxide (ITO), which is the preferred one, and fluorine tin oxide (FTO), which is less effective						
Special Topics	However indium is rare and has to be extracted from zinc and lead ones, of which it is a minor component; production is loss than						
	500 tops a year		ic and icad ores, or white	on it is a minor component, p			
Data & Rankings							
	ITO and FTO are not	without their drawbacks. They lack	transparency with resp	ect to the infrared region of the	e spectrum, and		
Sci-Bytes	this restricts their abili	ity to gather a wider range of solar	energy. They are unstal	ble in the presence of acids a	nd bases, and their		
Past Breaking Papers	metal ions are prone to diffusing into the polymer layers thereby reducing efficiency. Unless they are structurally perfect they						
Emerging Research Fronts	suffer from current lea	akage.					
Fast Moving Fronts	Graphene, on the oth	er hand, appears to have none of t	hese drawbacks—and it	it is cheap and sustainable. G	aphene films		
Corporate Research Fronts	are transparent, electrically conducting, and can be made ultra-thin. Paper #9 describes such an electrode, and one that is suitable						
Research Front Maps	for solid-state dye-sensitized solar cells which harvest light over a wider range of the spectrum. What is particularly important for						
Current Classics	these titanium dioxide based solar cells is that the graphene films are chemically more stable, especially to strong acids. The						
Top Topics	paper comes from the	e Max Planck Institute for Polymer	research at Mainz, Gern	nany.			
Rising Stars	Graphana shaata ara	produced from graphite starting wi	ith the acid evidetion of	graphite flakes. The exugen	optoining groups		
New Entrants	Graphene sneets are	produced from graphile starting wi	in the actu oxidation of g	graphile liakes. The oxygen-	untaining groups		
Country Profiles	which are formed make the product dispersible in water in which it can be exposed to ultrasonitication to separate it into thinner						
	sheets. These are the	en deposited on to a substrate such	i as quartz, and this is d	aone by simply alpping in the	ot solution. The		
About Science Watch	thickness of the film c	an be varied by changing the temp	perature of the aqueous	medium.			
Methodology	The graphite oxide so	o obtained is an insulator but can be	e reduced by heating to	high temperatures in an atmosf	sphere of argon		
Archives	and hydrogen gas. (T	he absence of oxygenated groups	in the product was evide	enced by IR spectroscopy.) T	ne resulting graphene		
Contact Us	film was tens of layers	s thick. One such film, which was 1	0 nm in width, was obse	erved to have transmittance of	71% at a wavelength		
RSS Feeds	of 500 nm which may	be lower than that of ITO's 90% ar	nd FTO's 82%. Howeve	r, compared to ITO and FTO	the graphene film		
	is transparent to IR ra	adiation. The films have a conductiv	vity of 550 S cm-1 which	compares to that of graphite	s 1250 S cm-1 and		
	so they have the potential to act as electrodes.						
	Currently leading the research at the Max Planck Institute are Xinliang Feng and Klaus Müllen, and their recent papers suggest						
	more exciting develop	oments. In Nanotechnology (Y.Y. Li	iang, <i>et al.</i> , 20[43]: no 43	34007, 2009) the group repo	ts an improved way		
	of making the films w	hich involves using acetylene in the	e reduction of the graphi	ite oxide, a method which not	only repairs		
	defects within the she	eets but also increases the conduct	ivity to 1425 S cm-1 whi	ile still maintaining high optica	I transmittance.		
	In Advanced Material	a (0 Su at al 21/21) 2101 5 200	()) they report the inclus	cion of large aromatic denser	nd acceptor moleculas		
	to functionalize the st	ש נש. שנו, <i>פו מו.,</i> ∠ונשון: שושו-5, 200 המשפטת This ממחיים לאווייייים לאווייייים לאווייייים לאווייייים לאוויייים לאוויייים לאוויייים לאוויייים לאוויייים			it to be dependent		
	io iuncionalize the gr	apriene. This approach stabilizes t	ne graphene in aquéous	s dispersion and also enables	it to be deposited		

The figures below are from an interview with coauthor Hideo Hosono, in regards to paper #1. Click figures for a larger view &

🖄 PDF

description.

in monolayer and double-layer on substrates in large quantities. When the graphene is then heated at around 1000° C, the aromatic molecules repair holes in the film, thereby contributing to an improved conductivity of 1314 S cm-1 which now exceeds that of ordinary graphene.

As Xinliang Feng tells *Science Watch*: "Our work is possibly the most attractive application of graphene in future electronics. We are currently improving the quality of graphene film in terms of transmittance and conductivity, because these are the crucial parameters for the window electrode replacement of traditional ITO. I think that we are leading in this area of large scale and cheap synthesis of transparent graphene electrodes. If graphene electrodes can be fabricated by easy and cheap methods in large quantities, then a big market for them can be expected."

A sustainable future for solar panels now seems assured.

Dr. John Emsley is based at the Department of Chemistry, Cambridge University, U.K.

Chemistry Top 10 Papers

Rank	Paper	Citations This Period (Jul-Aug 09)	Rank Last Period (May-Jun 09)			
1	Y. Kamihara, et al., "Iron-based layered superconductor La[O _{1-x} F _x]FeAs (x = 0.05-0.12) with T _c = 26 K," J. Am. Chem. Soc., 130		1			
	(11): 3296-7, 19 March 2008. [Tokyo Inst. Technol., Yokohama, Japan] *273SL					
2	C. de la Cruz, et al., "Magnetic order close to superconductivity in the iron-based layered LaO _{1-x} F _x FeAs systems," Nature, 453		2			
	(7197): 899-902, 12 June 2008. [6 U.S. and China institutions] *311WV					
3	H. Takahashi, et al., "Superconductivity at 43 K in an iron-based layered compound LaO1-xFx FeAs," Nature, 453(7193): 376-8, 15	51	4			
	May 2008. [Nihon U., Tokyo, Japan; Tokyo Inst. Technol., Japan] *301AI					
4	X.L. Li, <i>et al.</i> , " Chemically derived, ultrasmooth graphene nanoribbon semiconductors," <i>Science</i> , 319(5867): 1229-32, 29 February 2008. [Stanford U., CA] *267SX	44	4			
5	J. Peet, <i>et al.</i> , "Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols," <i>Nature Mater.</i> , 6(7): 497-500, July 2007. [U. Calif., Santa Barbara] *184NH	40	5			
6	A.I. Hochbaum, et al., "Enhanced thermoelectric performance of rough silicon nanowires," Nature, 451(7175): 163-7, 10 January 2008. [U. Calif., Berkeley; Lawrence Berkeley Natl. Lab., CA] *249GA	36	7			
7	S. Stankovich, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, 45 (7): 1558-65, June 2007. [Northwestern U., Evanston, IL; U. North Carolina, Chapel Hill] *185XJ		6			
8	B. Tian, <i>et al.</i> , "Coaxial silicon nanowires as solar cells and nanoelectric power sources," <i>Nature</i> , 7164(449): 885-9, 18 October 2007 [Harvard U., Cambridge, MA] *221LY	29	8			
9	X. Wang, L. Zhi, K. Müllen, "Transparent, conducive graphene electrodes for dye-sensitized solar cells," <i>Nano Letters</i> , 8(1): 323- 7, January 2008. [Max Planck Inst. Polymer Res., Mainz, Germany] *249VI	25	†			
10	A.I. Boukai, <i>et al.</i> , "Silicon nanowires as efficient thermoelectric materials," <i>Nature</i> , 451(7175): 168-71, 10 January 2008. [Caltech, Pasadena] *249GA	24	10			
SOURCE: Thomson Reuters Hot Papers Database. Read the Legend.						
KEYWORDS: GRAPHENE, SOLAR CELLS, GRAPHENE ELECTRODES, GRAPHENE FILMS, XINLIANG FENG, KLAUS MULLEN.						
DF back to top						

What's Hot In... : What's Hot In Chemistry Menu : Sustainable Electrodes for Solar Cells - Jan/Feb 2010

Science Home | About Thomson Reuters | Site Search

Copyright | Terms of Use | Privacy Policy