

THOMSON REUTERS	
-----------------	--

	Home	About Thomson Reuters	Press Room	Contact Us		
ScienceWatch Home			~~~~			
Inside This Month	SCIPI	ηςθιχίατα				
. Interviews	TRACKING TRENDS &	PERFORMANCE IN BASIC RESEARCH	.com			
Featured Interviews			i daulaan			
Author Commentaries	What's List Is	Inter	Analyses	Data & Rankings		
Institutional Interviews	vvnatis Hot In : vvnatis Hot in Physics Menu : Combined Supernova Data Constrain Consensus Cosmology - Jan/Feb 2010					
Journal Interviews	WHAT'S HOT IN PHYSICS, January/February 2010					
Podcasts						
	Combined Supe	ernova Data Constrain Conser	nsus Cosmology			
Analyses	by Simon Mitton					
Featured Analyses	Cosmology continue	s to top the Physics Top Ten (papers	s #1, #4, #8, and #9), but	the superconductivity renaissance means		
What's Hot In	that condensed mat	ter physics now has five contenders ((#2, #3, #5, #7, and #10).	Paper #1, however, on the 5-year		
Special Topics	Wilkinson Microwave	e Anisotropy Probe (WMAP) dataset,	has roared so far ahead	(138 citations this period) that it would		
Dete & Deulines	appear unlikely that	laboratory physics can capture pole	position any time soon. B	ut who knows what mighty shake-up the		
Data & Kankings	Large Hadron Collid	er could achieve in a year or so?				
Sci-Bytes	Paper #9, a new ent	rant, is from the Supernova Cosmolo	ogy Project, a consortium	headed by Saul Perlmutter (Lawrence		
Fast Breaking Papers	Berkeley National La	aboratory, California); this team won	a half share in the 2007 G	Gruber Cosmology Prize, the other laureate being		
New Hot Papers	the High-z Supernova Search Team led by Brian Schmidt (Australian National University). The supernova cosmology game					
Emerging Research Fronts	compares the distance of Type Ia supernovae (SN Ia) with the redshifts of their parent galaxies. The supernova data provide the					
Fast Moving Fronts	best fix on how fast the universe was expanding at different times in its history. Good results depend upon observing many SN la					
Corporate Research Fronts	both near and far. And in the quest for good results, #9 revisits old data, combines that with new data, and nuts apother turn on					
Research Front Maps	the ratchet that constraine the values of the cosmological parameters					
Current Classics			parameterer			
Top Topics	Historically, observational cosmology has been plagued by systematic errors. A new kind of telescope or detector may					
Rising Stars	have instrumental bias that is initially poorly understood. More commonly, unknown bias creeps in when data obtained at					
New Entrants	different epochs or with different instruments are binned together. Since the purpose of observational cosmology is to detect how					
Country Promes	the universe has cha	anged over time, it is essential that su	urveys do not introduce b	ias. Dealing with such error is mainly what #9 is		
About Science Watch	all about: taking a he	eterogeneous compilation, laboriously	y winnowing out a reliable	e dataset, and then refining the cosmological model		
	The backstory of #9	starts in 1998, when new surveys of	SN Ia at high redshift (z -	~ 0.5) were compared to data on low-redshift		
Methodology	objects (z ~ 0.05). T	he literature for 1998 to 2007 include	s several unrelated high-	redshift samples that were analyzed independently		
Archives	of each other. Paper	#9 sieves the original data to arrive	at a more uniform sample	 Selection cuts reduced the initial sample of 414 		
Contact Us	SN la to a union san	nple of 307				
RSS Feeds						
	The investigation ac	hieved several major goals. Importar	ntly, it includes a new sam	pple of low-redshift SN Ia to complement the		
	growing sample of h	igh-redshift SN Ia. This is non-trivial	because the volume of th	e nearby universe is far smaller than the		
	distant universe: the	refore local SN are rare, and the stat	istics get complicated by	the paucity of the sample. It is still the case that		
	most low-redshift SN	l are in a sample made 16 years ago	. Nearby and faraway SN	l are both needed to constrain		
	cosmological parameters.					
The paper is highly cited because it reflects the current best knowledge of the world's SN la datasets, thanks to the						
	new datasets from the	ne local universe. The sample is suffi	ciently large to permit the	exclusion of outliers, and that's the main		
	reason why the asso	ciated errors have been reduced. Th	ne future of SN cosmolog	y is that high-quality data will improve		

our understanding of the accelerating universe, and that should provide insights into dark energy and dark matter.

The progenitor of a Type Ia supernova Two normal stars are in a binary pair. The more massive star becomes a grant 63

🖄 PDF

The Progenitor of a Type Ia Supernova.

[+] details

Elsewhere in our current list, #8 is getting plenty of attention. This is a report on antiparticles in cosmic rays, and it looks at a relatively simple question: what is the source of cosmic ray positrons? Traditionally the answer has been that antiparticles result from a secondary source: collisions between cosmic ray particles and atoms in the interstellar medium. Paper #8 reports data from a satellite-borne experiment that detected electrons and positrons with energies 1.5 to 100 GeV between July 2006 and February 2008.

As reported in #8, the measured fraction of higher- energy positrons cannot be entirely explained by secondary sources; there have to be primary sources. There are several interesting candidates for the primary component, including the annihilation of dark matter particles in the vicinity of our galaxy or contribution from astrophysical sources, such as pulsars. Right now the data cannot tell the difference between dark matter annihilation or astrophysical sources. However, ongoing space missions are slowly improving the statistics. And then there's always the Large Hadron Collider...**a**

Dr. Simon Mitton is a Fellow of St. Edmund's College, Cambridge, U.K.

Physics Top 10 Papers

Rank	Paper	Citations This Period (Jul-Aug 09)	Rank Last Period (May-Jun 09)					
1	E. Komatsu, et al., "Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation," Astrophys. J. Suppl. Ser., 180(2): 330-76, February 2009. [14 institutions worldwide] *406EI	138	1					
2	X.H. Chen, <i>et al.</i> , "Superconductivity at 43K in SmFeAsO _{1-x} F _x ," <i>Nature</i> , 453(7196): 761-2, 5 June 2008. [U. Sci. & Tech., Hefei, China] *308UK	62	8					
3	Z.A. Ren, <i>et al.</i> , "Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O _{1-x} F _x]FeAs," <i>Chinese</i>	56	9					
4	J. Dunkley, <i>et al.</i> , "Five-year <i>Wilkinson Microwave Anisotropy Probe</i> observations: Likelihoods and parameters from the <i>WMAP</i> data," <i>Astrophys. J. Suppl. Ser.</i> , 180(2): 306-29, February 2009. [14 U.S. and Canadian institutions] *406EI	51	5					
5	FC. Hsu, <i>et al.</i> , "Superconductivity in the PbO-type structure alpha-FeSe," <i>PNAS</i> , 105(38): 14262-4, 23 September 2008. [Acad. Sinica, Taipei, Taiwan; Natl. Tsing Hua U., Hsinchu, Taiwan; Duke U., Durham, NC] *353TY	46	†					
6	 F. Schedin, <i>et al.</i>, "Detection of individual gas molecules adsorbed on graphene," <i>Nature Mater.</i>, 6(9): 652-5, September 2007. [U. Manchester, U.K.; Inst. Microelectronics Tech., Chernogolovka, Russia; U. Nijmegen, Netherlands] *207FE 	41	+					
7	H. Ding, et al., "Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba _{0.6} K _{0.4} Fe ₂ As ₂ ," EPL-Europhys. Lett.,	40	†					
	83(4): no. 47001, August 2008. [Chinese Acad. Sci, Beijing; Adv. Inst. Mater. Res., Tohoku, Japan; Tohoku U., Japan; Boston Coll., MA] *345VP							
8	O. Adriani, <i>et al.</i> , "An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV," <i>Nature</i> , 458(7238): 607-9, 2 April 2009. [17 institutions worldwide] *427RK	35	+					
9	M. Kowalski, et al., "Improved cosmological constraints from new, old, and combined supernova data sets," Astrophys. J., 686(2): 749-78, 20 October 2008. [41 institutions worldwide] *364YB	32	†					
10	J. Dong, et al., "Competing orders and spin-density-wave instability in La(O _{1-x} F _x)FeAs," EPL-Europhys. Lett., 83(2): no. 27006,	30	†					
	July 2008. [Beijing Natl. Lab. Condensed Matter Phys., Chinese Acad. Sci.] *345TZ							
SOURCE: Thomson Reuters Hot Papers Database. Read the Legend.								
KEYWO	RDS: COSMOLOGY, SUPERNOVA, WILKINSON MICROWAVE ANISOTROPY PROBE, WMAP, SAUL PERLMUTTER, TYPE IA SUPERNOVAE,							
SN IA.								
🖄 PDF			back to top 👘					

What's Hot In...: What's Hot in Physics Menu: Combined Supernova Data Constrain Consensus Cosmology - Jan/Feb 2010

Science Home | About Thomson Reuters | Site Search